
A millikelvin STM/AFM powered by an adiabatic demagnetization refrigerator

T. Esat, ¹ D. Krylov, ¹ S. Just, ¹ M. Ternes, ^{1,2} B. Voigtländer, ³ P. Gegenwart⁴, A. Hobl⁵, M. Krzyzowski⁶, R. Temirov^{1,7,#} and F. S. Tautz^{1,8}

We have recently demonstrated that adiabatic demagnetisation refrigeration (ADR) can be effectively used in an ultra-high vacuum millikelvin scanning tunnelling microscope (mK STM) [1,2,3]. Its main advantage is the absence of circulating cryoliquids, which allows for a modular design with complete electrical control and eliminates the need for mechanical pumping during the STM session. Another advantage of ADR is the precise temperature control. In this contribution, we reveal a new mK STM/AFM prototype (Figure 1) with high-frequency wiring and in-STM single atom (molecule) deposition source and announce our plans for its commercialisation.

Figure 1. The figure shows a 3D model of the millikelvin STM/AFM.

Reference

- [1] T. Esat et al. Rev. Sci. Instrum. **92** (6) 063701 (2021).
- [2] T. Esat et al. Phys. Rev. Res. 5, 033200 (2023).
- [3] T. Esat et al. Commun. Phys. 6, 81 (2023).

¹Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, *Jülich, Germany*

²Institute of Physics II B, RWTH Aachen University, Aachen, Germany

³mProbes GmbH, Jülich, Germany

⁴University of Augsburg, Institute of Physics, Augsburg, Germany

⁵Bilfinger Nuclear & Energy Transition GmbH, Würzburg, Germany

⁶CRYOVAC GmbH & Co. KG, Troisdorf, Germany

⁷Institute of Physics II, University of Cologne, Cologne, Germany

⁸Experimental Physics IV A, RWTH Aachen University, Aachen, Germany

[#] Presenting author's e-mail: r.temirov@fz-juelich.de